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ABSTRACT 
A system composed of multiple interacting components is capable 
of responding to contextual information and can produce a higher 
range of non-linear responses to stimuli compared to a modular 
system with a low degree of component interaction. However, the 
fitness landscape of highly integrated systems is more rugged 
indicating that such systems are likely to be less evolvable. In this 
work we use an artificial life simulation to investigate whether the 
evolvability of highly integrated systems can be improved if the 
level of integration between the system’s components is under 
evolutionary control. When evolving our multi-component system 
we discover that the level of integration very quickly falls to 
virtually zero reducing the ruggedness of the landscape and 
making it nearly neutral. This allows the evolving population to 
explore the genome space without getting stuck on local optima. 
The components then integrate and the evolving population settles 
on the global optimum. This work is unique because the presented 
problem requires the evolving system to be fully integrated in 
order to solve it and as such the decreased ruggedness and near 
neutrality are not a permanent feature of the landscape but rather a 
property which is temporarily manipulated and exploited by the 
evolving population.  

Categories and Subject Descriptors 

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– Multiagent systems.  

General Terms 

Theory 

Keywords 

Near neutrality, ruggedness, evolvability, artificial life, context 
dependence. 

1. INTRODUCTION 
What makes a population evolvable is one of the central points of 
discussion in biology [22] and increasingly computer science, 
where algorithms based on evolution are used to find solutions to 
problems, [2], [11]. In very simple terms evolvability means that 
an evolving population can easily produce new phenotype that are 
of higher fitness, put another way, evolvability means that a 

particular fitness functions can easily be optimized using some 
form of an evolutionary search algorithm. High evolvability is 
associated with a high level of neutrality or near neutrality [12],   
[13], [8], [5], [19] and a low ruggedness [18], [9] of the fitness 
landscape. High levels of neutrality or near neutrality allow an 
evolving population to explore large parts of the genome space 
because there is a minimal change in fitness, allowing the 
population to move closer towards the global optima [21]. Low 
levels of ruggedness, usually measured using autocorrelation 
estimates  (see below), indicate that the fitness landscape has few 
local optima the evolving population can potentially get stuck on 
[10], [17]. 

The level of fitness landscape ruggedness is highly dependent on 
the amount of interactions between the components of the system 
in question. Modular systems (i.e. low intensity of interactions 
between constituent components) are associated with a low 
number of local optima and hence a smoother fitness landscape. 
On, the other hand, a system where the constituent components 
are highly dependent on the state of other components will have 
many local optima and therefore a very rugged fitness landscape. 
Modularity is therefore often championed as one of the most 
important mechanisms by which evolvability is increased [14], 
[1],   

Neutrality of the fitness landscape can be caused by redundancy in 
the genotype phenotype mapping which means that several 
different genotypes have the same phenotype and hence the same 
fitness [16], [7] . Neutrality allows an evolving population to drift 
through neutral networks of the genome space until a new genome 
that increases its fitness is found.  

Near neutrality is different from absolute neutrality in the 
mechanisms that give rise to it but its effects can be similar. Near 
neutrality, just like low ruggedness can be caused by sparse 
connections between a system’s components because in a sparsely 
connected system the overall changes to fitness due to a single 
mutation are likely to be small but non-zero. If the selection 
pressure is relatively low an evolving population will be able to 
move through the fitness landscape as if tough the fitness 
landscape was neutral, with all the evolutionary benefits this 
entails. 

This work investigates the relationship between the amount of 
component interaction and fitness landscape ruggedness, 
neutrality and evolvability. We created an artificial life simulation 
consisting of 100 non-interacting agents each composed of eight 
components. The agents were presented with a 2D navigation 
problem but since the agent’s components could only obtain 
limited, local and ambiguous information the components had to 
interact in order to solve the problem.  

We find that the evolvability of the artificial life agents is 
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increased if, in addition to the evolution of the components,  the 
intensity of component interaction also evolves. Under such a case 
the intensity of interaction falls to virtually zero making the 
fitness landscape nearly neutral and less rugged. Then, after a 
variable period of time the level of component interaction 
increases and the population settles onto the global optima. When 
the intensity of component interaction is not under evolutionary 
control it is very difficult for the evolving population to find the 
global optimum. While the explicit task is contrived the results are 
of general relevance. Specifically, this work differs from other 
works on neutrality and ruggedness in two respects, first: the level 
of component integration is under explicit evolutionary control as 
opposed it being imposed and second: the ideal solution requires 
complete component integration hence the near neutrality and low 
ruggedness are not isomorphic features of the landscape but rather 
just describe certain portions of it.  

2. METHODS 
The 2D navigation problem requires the agent’s components to 
move as close as possible towards the intersection of 2 orthogonal 
lines. Each component is aware of the smallest Euclidian distance 
between itself and one of the two lines. Which one of the two 
lines a component is ‘aware’ of depends on the agent’s genome.  

In order to ensure the components do not ‘memorise’ the exact 
location of the line’s intersection the orientation of the lines is 
rotated and the initial position of the agents is altered several 
times per each generation. (see § Appendix for exact line and 
component coordinates).  

 
Figure 1. shows the four different orientations the lines can be 
in. In the top left surface two agents (eight components each) 
are illustrated. Some components are blue indicating they can 

‘sense’ the distance to the blue line while the orange 
components can ‘sense the distance to the red line. The agent’s 
components have to interact with each other in order to move 

towards the intersection between the two lines. 

Since each component is only given the absolute distance from 
one of the lines and since the components have neither memory 
nor can exchange information, no single component can 
independently determine which is a suitable direction to move in. 
The components can only find the intersection of the two lines if 
they interact with each other. 

The direction and speed of motion of any component at any given 
time step is characterised by three different motion vectors. The 

first vector, referred to as the internal motion vector, depends on 
the component’s genes and the distance between the component’s 
current location and one of the given lines. The second motion 
vector, referred to as the external motion vector, is a scaled sum of 
all the other component’s internal motion vectors. Finally, there is 
the absolute motion vector which is in fact the sum of the internal 
and external motion vectors. The relationship between the 
different vectors is given by  

 
iii EIA +=      (1) 

Where 
iA  is the absolute motion vector, iI  is the internal motion 

vector and 
iE  is the external motion vector for a component i. 

The external motion vector  is given by 
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where S is the intensity of component interaction and jI  is the 
internal motion vector of component j. The value S is encoded in 
the agent’s genome by 1 or more bits, depending on the 
experiment run (see below). The internal motion vector of any 
component i is given by:  

xdI =      (3) 

where d (represented by two bits in the genome) can be any of 
the following 2D vectors [1,0],[-1,0],[0,-1],[0,1] representing a 
one unit motion of up, down, left or right respectively. x is a 
Bernoulli variable: 
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while the value p in equation (4) is calculated according to the 
following relationship: 
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This rather cumbersome expression is actually rather 
straightforward. The variables t and a are both controlled by the 
genes of a given component. The 1 bit binary variable t = {0,1} 
controls which of the two lines, ‘blue’ or ‘red’, are used for the 
distance measure, when t=0 the distance from the red line is 
measured, when t = 1 the distance to the blue line is measured. 
The 4 bit variable a represents any of the following values {0, 
1/31, 2/31, …, 30/31, 1}. r and b are given by (6) 

r = (1 - (|dr |/100))    (6) 

b = (1 - (|db |/100)) 

where dr is the distance between the component and the red line, 
db is the distance between the component and the blue line. If r or 
b < 0 then r, b = 0. Expression (5) essentially links the distance 
between a component and one of the lines with the probability of 
motion according to the evolved value a so that |p| ∝ |{r, b} - a|.  

The 2D surface the agents move on is bounded by a frictionless 
non-elastic boundary restricting the agent’s location to a 200x200 
surface area. Two or more components can occupy the same 
location without interference.  

The fitness of each agent is given by equation (7)  
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Where wi is the fitness of component i and r, b are defined in (6). 
Essentially, the components of the agents are initialised in a given 
location with a particular line orientation and then their fitness is 
assessed. After 1000 turns the orientation of the lines are changed 
and the coordinates of the agents are re-set (see appendix). After 
this process has occurred 8 times, 2 agent tournament selection 
with a 50% chance of the best agent winning is applied to the 
population of agents followed by single point crossover. Once this 
is completed 10% of the new agents have one of their bits 
mutated. Each experiment is run for 3000 generations.  

3. EXPERIMENTS AND RESULTS 
To investigate what effects evolvable component integration has 
on evolvability we conducted 4 experiments following the 
methods described above. In the first experiment the intensity of 
component interaction was set to 1, i.e. S = 1 in equation (2), for 
the entire duration of evolution. In the second experiment the S 
gene was represented using 1 bit so that the components were 
either fully integrated or fully independent. In the third 
experiment the S gene was represented by 2 bits so that the level 
of integration could vary between {0,0.33,0.66,1} while in the last 
experiment the S gene was represented by 5 bits to that the level 
of integration between components was a value in the following 
set {0,1/31,2/31,…,1}, (remembering that S = 0 indicates zero 
intensity component interaction while S = 1 indicates maximum 
intensity component interaction).  

When the elements are fully integrated (S = 1) in experiment 1, 
the agents are unable to evolve the optimal behaviour. This is 
despite the fact that the optimal behaviour requires complete 
integration between the elements (see figure 2 Experiment 1). 
Instead, the average maximum score reached by agents that were 
de facto fully integrated was only 45% of the maximum score (the 
maximum fitness scores illustrated in figure 6 were normalized by 
the maximum fitness attained in the least successful run). When, 
however, the level of integration between the agent’s components 
could evolve, the agents were more likely to evolve the optimal 
behaviour. Thus, when the level of integration could evolve, but 
only coarsely (i.e. the ability to alternate between full unit 
independence and full unit integration: S = 0 and S = 1, 
respectively) in Experiment 2, the agent’s level of fitness 
increased to 55% of the maximum fitness (see Figure 2, 
Experiment 2). Increasing the resolution of component integration 
intensity still further enabled the agents to attain a normalized 
fitness of more than 85% to 95% of the maximum (see Figure 2, 
Experiment 3 and 4).  

Given the explicit nature of the task, agents in experiment 3 and 4 
evolve so that the components are fully integrated (S = 1), like 
agents in experiment 1. However, unlike agents in experiment 1, 
being able to alter their level of integration during evolution 
enabled agents in experiment 3 and 4 to evolve the optimal 
solution. Indeed, consistent with our hypothesis, the level of 
integration between the components in experiment 3 and 4  varied 
significantly during evolution, the intensity of integration (S) 
always drops from an initial random value of 0.5 to virtually 0 
(Figures 3a and 3b). After a variable period of component 
independence, the parameter S then increased until in the end the 

components are fully integrated. And yet when the elements are 
fully integrated from the outset (as is the case in experiment 1), 
the ideal behaviour is not evolved, despite the fact that setting S = 
1 reduces the size of the search space to a region still containing 
the ideal solution.  
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Figure 2. This figure shows the average maximum score for 
the agents (normalised by the lowest maximum score) when 

the components were capable of different levels of integration. 
In experiment 1 the components were fully integrated, S = 1, 
in experiment 2 the components were either fully integrated 

or fully independent S = 0/1. In experiment 3 the possible level 
of component integration was any value in the set {0, 0.33, 

0.66, 1} while in experiment 4 the level of component 
integration was any value in the following set {0, 1/31, …, 1}. 

Figure 3a; Shows the average level of unit integration for 5 
populations that reached above 95% of the maximum fitness. 
The level of integration for each agent was set to random so 

the average initial value is around 0.5.  

Figure 3b; shows the level of integration for the same 5 
populations over 1000 generations. The number of generations 
a population of agents remain non-integrated appears random 
but all do finally integrate, otherwise the problem presented 

could not be solved. 

The results demonstrate a clear relationship between agent success 
and the ability to evolve component integration. To formalise 
these observations we measured the level of fitness landscape 
ruggedness when the agent’s components were integrated and 
when the agent’s components were independent. A common 
method for measuring ruggedness of a fitness landscape is to 
analyze the autocorrelations of fitness value series [6], [20], [18]. 
A fitness value series is obtained by randomly initializing the 
genome of an agent and evaluating its fitness. The genome of the 
agent is then modified in some way and the fitness of the new 
agent is evaluated. This process is repeated until one has a series 
of fitness values, which describe aspects of the fitness landscape 
topology. An autocorrelation is then performed on this series. The 
autocorrelation is the expected value of the product of a series 
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with a shifted version of itself as given by (5): 
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where Xi is the series in question, k is the number of steps by 
which the series is shifted, μ is the mean and σ2 the variance. If the 
variance is not zero or infinity, the function is well defined and 
lies in the following range [-1,1]: 1 indicates complete correlation 
between the time series and a shifted version of itself, while -1 
indicates complete anti-correlation.   

In this study a fitness value series was created by mutating a 
single bit in the genome or by using single point crossover with 
randomly created genomes [15]. Both methods were applied to 
agents with fully integrated and fully independent components, 
resulting in four fitness value series in total. The higher the 
autocorrelation for a given value of lag k the smoother the fitness 
landscape, assuming fitness landscape statistical isomorphism. It 
should be noted that the autocorrelation measure does not capture 
neutrality in the fitness landscape, see for example fitness 
landscape portraits proposed by [18].  

Results in figure 4 show the average of ten autocorrelation 
estimates for the four series under different values of lag k. The 
top two lines are autocorrelation estimates for agents with 
independent components (where S = 0). The bottom two lines are 
autocorrelation estimates for fully integrated agents (where S = 1). 
Clearly, when S = 0, the autocorrelation is higher than when S = 
1, demonstrating that component independence is associated with 
a smooth fitness landscape, and component integration with a 
more rugged landscape. This is similar to autocorrelation 
estimates of the Kauffman NK landscape, where ruggedness 
increases as the number of epistatic interactions K increases [18].    
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Figure 4; the top two lines show the estimated 

autocorrelations when the component are independent while 
the bottom two lines show the estimated autocorrelations 

when the components are integrated. There are two lines per 
case since one fitness series was generated by mutating a 

single bit while the other fitness series was generated through 
single point crossover with a random genome. 

The ruggedness results in figure 4 indicate that increasing the 
level of component integration increases the amount of local 
optima making it more likely that an evolving population will get 
stuck on a local optima. In addition to measuring the ruggedness 
of the fitness landscape under different level of component 
integration the relationship between component integration and 
near neutrality were also measured. Absolute neutrality can be 
measured by recording the number of mutations that produce no 
change in fitness. However, since near neutrality can not be 
measured in this manner we looked at the average standard 
deviation of fitness values produced by a random walks of 400 

mutations through the fitness landscape under different levels of 
integration. More specifically, 10 random agents were mutated 
400 times with their fitness evaluated at every mutation. The 10 
agents had their level of integration set to 0, 0.25, 0.5, 0.75 and 1 
in turn. Figure 5 illustrates the average standard deviation under 
different levels of integration.  
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Figure 5. The average of 10 standard deviation values for a 
random walk through the fitness landscape under different 

level of component integration. The figure illustrates that low 
component integration is associated with a more neutral 

fitness landscape. 

Figure 5 shows that the level of component integration is 
inversely proportional the neutrality of the fitness landscape. 
These results, in combination with results shown in figure 4 
indicate that, at least in this model, the single parameter of 
component integration can reduce the ruggedness and increase 
neutrality of the fitness landscape.  

4. DISCUSSION 
For the constructed problem described above the optimum 
solution purposefully requires the agent’s units to be fully 
integrated, which means that the optimal solution resides in the 
relatively rugged and non-neutral, less evolvable part of the 
fitness landscape [6]. As such, the results in figure 2 Experiment-1 
show that a population of agents restricted to this smaller, less 
evolvable part of the landscape, which nevertheless contains the 
ideal solution, are unlikely to find it. Rather, figure 2 Experiment -
3 -4 agents and Figure 3a and 3b show that the optimal solution is 
more likely to be reached when the level of integration between 
an agent’s elements is under genetic control (i.e. component 
integration is evolvable). When evolving under these conditions, 
the initial level of integration always falls from an average of 0.5 
to virtually 0, before gradually increasing towards full integration 
(S = 1). Put another way, even though the initial population is 
randomly distributed across the landscape it quickly moves into 
the smooth and nearly neutral part of the landscape, before 
moving into the rugged and non-neutral part of the landscape 
where it finally reaches the global optimum. 

In this study, the agents with maximum intensity component 
interactions are much less likely to evolve the ideal solution 
compared to agents that can control the intensity of component 
interaction, in the latter case the intensity of interaction always 
falls to zero before increasing to a maximum of one. The intensity 
of component interaction dimension, i.e. S in equation (2), can be 
viewed as a bypass dimension [3] [4] since its existence is not 
needed for a ‘good’ solution, rather, this dimension enlarges the 



fitness landscape in a non-rugged nearly neutral fashion 
increasing evolvability.  

The central more general point of this work is the proposition that 
fully connected multi-component systems can become more 
evolvable if the intensity of interactions between the components 
is under evolutionary control. This allows an evolving system to 
reduce the intensity of component interaction hence potentially 
reducing the amount of local optima. Furthermore, the few local 
optima that remain will be less difficult to escape from since the 
landscape will be more neutral.  

Figure 6 is an schematic illustration of a fitness landscape 
showing the evolutionary benefits of variable component 
integration. The rugged part of the fitness landscape is associated 
with a high intensity of component interaction while the smoother 
part of the fitness landscape is associated with a low intensity of 
component interaction.  
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Figure 6. This hypothetical fitness landscape illustrates how 

reducing the intensity of interaction between components 
reduces the ruggedness of the landscape. The D1 dimension 

corresponds to different phenotypic parameters while the D2 
dimension corresponds to the intensity of interaction between 
components. If a population is trapped on the local optimum 
A it can still reach the global optimum B if a) the intensity of 
interaction is reduced b) the genome space is explored with 

minimal change in fitness c) the intensity of interaction 
increases. 

However, the ‘intensity of component interaction’ dimension only 
improve evolvability of an evolving population if the fitness 
values associated with the smooth part of the fitness landscape are 
sufficiently similar to the local optima being bypassed, otherwise 
the evolving population will never reach the smooth part of the 
landscape and so will be unable to explore the genome space. This 
implies that each component comprising the system must be 
relatively fit, even when independent of other components. This 
condition will only be met by some fitness functions.  

Not only does this study inform work on evolutionary search 
algorithms employed by computer scientists to optimise different 
fitness functions but adds insight into studies of biological 
systems, in particular the study of evolution and trait integration.  

5. CONCLUSION 
Fully connected systems provide the necessary substrate for 
context-dependent, non-linear behavioural responses to 
environmental stimuli, thus potentially improving the system’s 

overall fitness. On the other hand, the ‘evolvability’ of these 
systems is likely to be low, since altering any component of the 
system alters the function of all other components and hence is 
likely to results in lots of local optima and less fitness neutrality. 
Here we tested the hypothesis that the evolvability of integrated 
systems can be improved if the intensity of component interaction 
is under genetic control.  

We tested this hypothesis using an artificial life simulation where 
the problem to be solved required the agent’s components to 
exhibit a particular behaviour while fully integrated. Since the 
intensity of component interaction for the most successful agents 
always fell to virtually 0 and remained at this value for a number 
of generations before finally increasing to 1 the hypothesis was 
shown to be correct at least for this example fitness function and 
simulation.   

We explained our findings in terms of decreased ruggedness 
which reduces the number of local optima in the fitness landscape 
and near neutrality which makes the escape from local optima 
more achievable.  

We concluded our discussion by noting that variable intensity of 
component interaction will only improve evolvability in the way 
described in this study if the constituent components of the 
evolving system have an inherent and relatively high fitness even 
when independent of other components. This will clearly only be 
true for a certain class of fitness functions.   
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 APPENDIX 1 
This table shows the coordinates of the blue and red lines for each 
the eight cases per generation.  

 

  x y  x y 

case 1      

 red 0 100  200 100 

 blue 50 0  50 200 

case 2      

 red 0 100  200 100 

 blue 50 0  50 200 

case 3      

 red 0 100  200 100 

 blue 150 0  150 200 

case 4      

 red 0 100  200 100 

 blue 150 0  150 200 

case 5      

 red 100 0  100 200 

 blue 0 150  200 150 

case 6      

 red 100 0  100 200 

 blue 0 150  200 150 

case 7      

 red 100 0  100 200 

 blue 0 50  200 50 

case 8      

 red 100 0  100 200 

 blue 0 50  200 50 

   

The initial coordinates of each component for each one of the 
eight cases is given below in xy pairs.  

Case1 ( 85-65, 85-65, 85-35, 85-35, 115-65, 115-65, 115-35, 115-
35)  

Case2 (85-165, 85-165, 85-135, 85-135, 115-165, 115-165, 115-
135, 115-135)  

Case3 (85-65, 58-65, 85-35, 85-35, 115-65, 115-65, 115-35, 115-
35) 

Case4 (85-165, 85-165, 85-135, 85-135, 115-165, 115-165, 115-
135, 115-135) 

Case5 (85-115, 85-115, 85-85, 85-85, 115-115, 115-115, 115-85, 
11-85) 

Case6 (135-115, 135-115, 135-85, 135-85, 165-115, 165-115, 
165-85, 165-85) 

Case7 (85-165, 85-165, 85-135, 85-135, 115-165, 115-165, 115-
135, 115-135) 

Case8 (135-165, 135-165, 135-135, 135-135, 165-165, 165-165, 
165-135, 165-135) 


